approximation solution of two-dimensional linear stochastic volterra-fredholm integral equation via two-dimensional block-pulse functions
Authors
abstract
in this paper, a numerical efficient method based on two-dimensional block-pulse functions (bpfs) is proposed to approximate a solution of the two-dimensional linear stochastic volterra-fredholm integral equation. finally the accuracy of this method will be shown by an example.
similar resources
Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
full textApproximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
T The nonlinear and linear Volterra-Fredholm ordinary integral equations arise from various physical and biological models. The essential features of these models are of wide applicable. These models provide an important tool for modeling a numerous problems in engineering and science [6, 7]. Modelling of certain physical phenomena and engineering problems [8, 9, 10, 11, 12] leads to two-dimens...
full textAPPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
full textapproximation solution of two-dimensional linear stochastic fredholm integral equation by applying the haar wavelet
in this paper, we introduce an efficient method based on haar wavelet to approximate a solutionfor the two-dimensional linear stochastic fredholm integral equation. we also give an example to demonstrate the accuracy of the method.
full textDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
full textDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of industrial mathematicsجلد ۸، شماره ۴، صفحات ۴۲۳-۴۳۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023